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In this paper, we derive a central limit theorem for marginally coupled designs that are
intended for computer experiments with both qualitative and quantitative factors. This
result is useful for establishing confidence intervals for estimators in various statistical
applications.
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1. Introduction

Computer experiments are widely used in many fields for studying complex physical phenomena that might otherwise
be too time-consuming, costly, or even impossible to conduct. The standard framework for computer experiments always
assumes that input factors are quantitative. However, inmany computer experiments, some factors are qualitative by nature.
For example, Schmidt et al. (2005) described a data center computer experiment that involved qualitative factors (such as
diffuser location and hot-air-return-vent location) and quantitative factors (such as rack power and diffuser flow rate).

For constructing designs of computer experiments with qualitative and quantitative factors, Qian (2012) constructed a
class of sliced space-filling designs, called sliced Latin hypercube designs (SLHDs). These designs consist of slices of space-
filling designs with each slice corresponding to a level combination of the qualitative factors. Thus, the run sizes of these
designs can be very large, even for a moderate number of qualitative factors. Deng et al. (2015) proposed a new type of
designswith economical run sizes, calledmarginally coupled designs (MCDs). And, He et al. (2017) introduced somemethods
for constructing MCDs with improved space-filling property in designs for quantitative factors.

The sampling properties of the designs are helpful in numerical integration, stochastic optimization and uncertainty
quantification. However, Stein (1987), Owen (1992), Loh (1996), Ai et al. (2016) and Kong et al. (2017) studied the sampling
properties of only those designs that involved quantitative factors. Qian (2012) and He and Qian (2016) derived the sampling
properties and the central limit theorem of SLHDs for computer experiments with qualitative and quantitative factors,
respectively. The sampling properties of MCDs are thus an important but unresolved issue. The objective of this paper is
to derive the asymptotic variance of an estimator for the expectation of function of output variables and the corresponding

∗ Corresponding author.
E-mail address: sunfs359@nenu.edu.cn (F. Sun).

https://doi.org/10.1016/j.spl.2018.11.018
0167-7152/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.spl.2018.11.018
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2018.11.018&domain=pdf
mailto:sunfs359@nenu.edu.cn
https://doi.org/10.1016/j.spl.2018.11.018


S. Wang, D. Wang and F. Sun / Statistics and Probability Letters 146 (2019) 168–174 169

central limit theorem for MCDs. In addition, we use the Dvalue defined as (4.1) to compare SLHDs with MCDs to demonstrate
that MCDs perform better than SLHDs under model (1.1).

In this paper, we consider a computer model that neglects the interactions among qualitative factors and interactions
among quantitative and qualitative factors. To be specific, let γ = (γ1, . . . , γp) and x = (x1, . . . , xq) denote the p qualitative
factors and q quantitative factors, respectively. The response f (w) at the input value w = (γ, x) is

f (w) = µ + τ1(γ1) + · · · + τp(γp) + g(x), (1.1)

where µ denotes the gross mean; τi(γi) denotes the effect of the ith qualitative factor at the level γi, i = 1, . . . , p; g(x)
represents the response for the quantitative factor at input x, under the assumption that E(g(x)) = 0; var (g(x)) = σ 2; and
x follows a uniform distribution on [0, 1]q. In addition, the effect of the qualitative factors satisfies∑

γ∈Si

τi(γ) = 0 for i = 1, . . . , p,

where Si denotes the set of the collection of all levels of the ith qualitative factor.
This paper is organized as follows. Section 2 introduces some useful definitions, notation and related work. Section 3

derives the asymptotic variance of the estimator and the corresponding central limit theorem for MCDs. The numerical
illustrations of the derived theoretical results are given in Section 4. Some concluding remarks are provided in Section 5. All
the proofs are provided in the online Supplementary Materials to save space.

2. Notation, definitions and related work

An orthogonal array A of strength t is an n × pmatrix in which the jth column has sj distinct levels {1, 2, . . . , sj}, and for
every n× t sub-matrix of A, each possible level combination appears equally often as rows (see Hedayat et al., 1999). When
all sj’s are not equal, the orthogonal array is asymmetric and denoted by OA(n, sp11 . . . spkk , t), where the first p1 columns have
s1 levels, the next p2 columns have s2 levels, and so forth. If all sj’s are equal to s, the orthogonal array is symmetric and
denoted by OA(n, sp, t), where p is the number of factors. Orthogonal arrays are very popular in fractional factorial designs.

A Latin hypercube of n runs for q factors, denoted by L(n, q), is represented by an n × q matrix L = (lik), in which
each column is a uniform permutation on {1, . . . , n} (i.e., randomly taking a permutation on the set {1, . . . , n}, with all
n! possible permutations having equally probability), and all columns are independently obtained (see McKay et al., 1979).
A Latin hypercube L(n, q) can be generated from an OA(n, sq, t), by replacing the r = n/s positions for level i with a random
permutation of {(i − 1)r + 1, . . . , ir}, for i = 1, . . . , s, and the resulting Latin hypercube is known as an OA-based Latin
hypercube (see Tang, 1993).

An ordinary Latin hypercube design X = (xik) of n runs for q factors, denoted by LHD(n, q), is generated by a Latin
hypercube L = (lik) through

xik =
lik − uik

n
, for i = 1, . . . , n, k = 1, . . . , q, (2.1)

where the uik’s are independent U(0, 1] random variables, and the uik’s are mutually independent of the lik’s. This class of
design is popular because when X is projected onto any one dimension, precisely one point falls within one of the n equally
spaced intervals of [0,1], as given by [0, 1/n), [1/n, 2/n), . . . , [(n − 1)/n, 1]. Different variants of Latin hypercube designs
have been developed in the literature. Orthogonality and maximin distance are two commonly used design criteria (see Sun
et al., 2009; Zhou and Xu, 2014; Sun and Tang, 2017; and the references therein for details).

A Latin hypercube L of n = mλ runs is called a sliced Latin hypercube of λ slices if L can be expressed as L = (L′

1, . . . , L
′

λ)
′,

each Li has m runs, and the m points in each column of Li have exactly one point from each of the m equally sized sets
{(j − 1)λ + 1, . . . , jλ}, 1 ≤ j ≤ m. A sliced Latin hypercube design (SLHD) X = (xij) of n runs for q factors can be generated
by a sliced Latin hypercube via (2.1). The whole design and each slice of the design can achieve maximum uniformity in any
one-dimensional projection.

Let D1 be an OA(n, sp, 2) and D2 be a Latin hypercube design. Then, the design D = (D1,D2) is called a marginally coupled
design if the rows in D2 corresponding to each level of any factor in D1 form a small Latin hypercube design (see Deng et al.,
2015). The D1 and D2 are designs for qualitative and quantitative factors, respectively. We use MCD(D1, D2) to denote this
design hereafter. Example 1 below provides anMCD(D1,D2) of 8 runs for two qualitative factors and two quantitative factors.

Example 1. Table 1 presents an example ofMCD(D1,D2) for two2-level qualitative factors,γ = (γ1, γ2), and twoquantitative
factors, x = (x1, x2). Fig. 1 displays scatter plots of x1 versus x2. The rows of D2, which correspond to levels of γ1 and γ2, are
listed on the left and right sides, respectively. Projected onto x1 or x2, only one ‘1’ or ‘2’ is located in each of the four intervals
of [0, 1/4), [1/4, 2/4), [2/4, 3/4), [3/4, 1]. Thus, for each level of any factor in D1, the corresponding rows of D2 possess
maximum uniformity in any one-dimensional projection.

For subsequent development, we review an algorithm for constructing theMCD(D1, D2) with n runs, p qualitative factors,
and q quantitative factors through an asymmetric OA(n, sp(n/s), 2) and an OA(n/s, sq1, 2), where s1 and s can differ. Suppose
that there exist an OA(n, sp(n/s), 2) and an OA(n/s, sq1, 2), denoted by A and B. The algorithm is as follows (see He et al., 2017).
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Table 1
A marginally coupled design MCD(D1 , D2).
D1 D2

γ1 γ2 x1 x2
1 1 0.0904 0.3202
1 1 0.3692 0.7023
1 2 0.8125 0.1543
1 2 0.5221 0.9006
2 2 0.1631 0.4766
2 2 0.4604 0.5638
2 1 0.8812 0.0693
2 1 0.6875 0.7942

Where D1 is an OA(8, 22, 2) and D2 is an LHD(8, 2).

Fig. 1. Scatter plots of x1 versus x2 in Example 1, where the rows of D2 correspond to levels 1 and 2 of γ1 (left) and γ2 (right), respectively.

Algorithm 1.

Step 1. Derive an OA-based L(n/s, q), say L, based on the orthogonal array B.

Step 2. Obtain an n×qmatrix D̃2 by replacing the levels 1, . . . , n/s of the last column of Awith the 1st, . . . , and the (n/s)-th
row of the L obtained in Step 1.

Step 3. Construct an n× qmatrix D̂2 based on D̃2 from Step 2 by replacing the s entries with level i in each column of D̃2 by
a random permutation of {(i − 1)s + 1, . . . , is} for i = 1, . . . , n/s.

Step 4. Generate an LHD(n, q), D2, based on D̂2 by (2.1).

LetD1 be the first p columns of A. Then,D = (D1,D2) is amarginally coupled design, whereD2 is generated by Algorithm1.

3. A central limit theorem for marginally coupled designs

In this section, we first derive the asymptotic variance of an estimator for the expectation of function of output variables
for a general MCD(D1, D2), with D1 being an OA(n, sp, 2) and D2 being an LHD(n, q). Then, a central limit theorem for MCDs
is derived to show that the estimator has a limiting normal distribution.

Suppose that the model is defined as (1.1). Let dlc be the collection of the rows of the MCD(D1, D2) that correspond to the
cth level of the lth qualitative factor for l = 1, . . . , p, c = 1, . . . , s. According to the definition of MCD(D1, D2), dlc is a small
Latin hypercube design with m runs, where m = n/s. The notation i ∈ dlc indicates that the ith run w i = (γi, xi) belongs to
dlc . We are interested in the linear combination of µl1, . . . , µls,

η =

s∑
c=1

λcµlc, where µlc =
1
m

∑
i∈dlc

E(f (w i)). (3.1)
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η is the gross mean of the response when λc = 1/s and represents a treatment contrast of the lth qualitative factor when∑s
c=1 λc = 0 (see Mukerjee and Wu, 2006).

Lemma 1. Based on the assumptions of model (1.1) and the design of MCD(D1, D2), we have

(1) µlc = µ + τl(c), l = 1, . . . , p, c = 1, . . . , s;
(2) µ̂lc =

1
m

∑
i∈dlc

f (wi) is an unbiased estimator of µlc ;

(3) η̂ =
∑s

c=1 λcµ̂lc is an unbiased estimator of η.

To derive the variances of µ̂lc and η̂ for MCD(D1, D2), we first introduce the functional analysis of variance (ANOVA)
decomposition (see Owen, 1992; Loh, 1996). Let F be the uniform measure on [0, 1]q with dF =

∏q
k=1 dxk and dF−k =∏

l̸=k dxl. Suppose that g : [0, 1]q → R is a continuous function on [0, 1]q with mean
∫
g(x)dF = 0 and variance∫

g2(x)dF = σ 2. Then, g(x) can be decomposed as

g(x) =

q∑
k=1

g−k(xk) + r(x), (3.2)

where g−k(xk) =
∫
g(x)dF−k, is the main effect function for the kth input variable, and r(x) is the residual.

Note that
∫
g−k(xk)dFk = 0,

∫
r(x)dF−k = 0. It can be verified that

∫
g−k(xk)g−l(xl)dF = 0 for k ̸= l and

∫
g−k(xk)r(x)dF =

0. Thus, the variance of g(x) can be decomposed as

σ 2
=

q∑
k=1

∫
g2
−k(xk)dxk +

∫
r2(x)dx. (3.3)

Next, we provide the covariance between f (w i) and f (w j) for i, j ∈ dlc and i ̸= j.

Theorem 1. Suppose that f (wi) is the model defined as (1.1), which is evaluated on an MCD(D1, D2), and g : [0, 1]q → R is a
continuous function. Then, as n = ms → +∞ with s fixed, for i, j ∈ dlc and i ̸= j, we have

cov (f (wi), f (wj)) = −m−1
q∑

k=1

∫ 1

0
g2
−k(xk)dxk + o(m−1). (3.4)

According to Theorem 1, we can obtain the variances of η̂ and µ̂lc for l = 1, . . . , p, c = 1, . . . , s.

Theorem 2. Suppose that f (wi) is the model defined as (1.1), which is evaluated on an MCD(D1, D2), and g : [0, 1]q → R is a
continuous function. Then, as n = ms → +∞ with s fixed, we have

(1) var (µ̂lc) = m−1σ 2
− m−1∑q

k=1

∫ 1
0 g2

−k(xk)dxk + o(m−1);

(2) var (η̂) = m−1∑s
c=1 λ2

cσ
2
− m−1∑s

c=1
∑q

k=1 λ2
c

∫ 1
0 g2

−k(xk)dxk + o(n−1).

By Theorem 2 and (3.3), the variances of µ̂lc and η̂ can be simplified as follows:

var (µ̂lc) = m−1
∫

r2(x)dx + o(m−1) and var (η̂) = m−1
s∑

c=1

λ2
c

∫
r2(x)dx + o(n−1). (3.5)

With these preparations, we now turn to discuss the limiting distributions of µ̂lc and η̂.

Theorem 3. Suppose that f (wi) is the model defined as (1.1), which is evaluated on an MCD(D1, D2), and g : [0, 1]q → R is a
continuous function. Then, as n = ms → +∞ with s fixed, for l = 1, . . . , p, c = 1, . . . , s, we have

√
m(µ̂lc − µlc) → N

(
0,
∫ 1

0
r2(x)dx

)
,
√
m(η̂ −

s∑
c=1

λcµlc) → N

(
0,

s∑
c=1

λ2
c

∫ 1

0
r2(x)dx

)
.

4. Numerical illustrations

In this section, we provide two numerical examples to corroborate the theoretical results derived in the previous section.
Obviously, the variance of the random error is unimportant because different experiment designs have the same random
error variance. In addition, we use a standard variance of the design (see Kiefer, 1961)

Dvalue = n × var (η̂), (4.1)

to compare designs with different run sizes n, and the smaller Dvalue is, the better the design is.
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Table 2
The comparison of SLHD and MCD(D1 , D2) for Example 2.

MCD(D1 , D2) SLHD

n 32 64
var (η̂) 0.0303 0.0259
var (µ̂11) 0.0330 0.0453
var (µ̂12) 0.0325 0.0459
Dvalue 0.9696 1.6576

Table 3
Comparison of variances between MCD(D1 , D2) and SLHD for Example 3.

MCD(D1 , D2) SLHD

n 27 81
var (η̂) 0.0089 0.0050
var (µ̂11) 0.0363 0.0529
var (µ̂12) 0.0361 0.0523
var (µ̂13) 0.0363 0.0509
Dvalue 0.2403 0.4050

Example 2. Consider a computer experiment with four 2-level qualitative factors and four quantitative factors, which is
simulated as follows:

f (w) = 10 + τ1(γ1) + τ2(γ2) + τ3(γ3) + τ4(γ4) + g(x),

where γi ∈ {1, 2}, i = 1, 2, 3, 4, τ1 = (−1, 1)′, τ2 = (8, −8)′, τ3 = (10, −10)′, τ4 = (−15, 15)′, and g(x) = 2/3ex1+x2 −

x4 sin(x3) + x3 − 2.23. The distribution of x is the uniform measure on [0, 1]4. g(x) is also used as a simulation function in
Cox et al. (2001) for computer experiments that contain only quantitative factors.

The experiment is conducted by MCD(D1, D2) 1000 times, where D1 is an OA(32, 24, 4) and D2 is an LHD(32, 4) (The
MCD(D1, D2) can be generated by Algorithm 1 based on an asymmetric OA(32, 24161, 2) and an OA(16, 24, 2)). Because
there are 16 level combinations of qualitative factors, if we use an SLHD, the design should contain 16 slices with each
slice containing m runs. Consider m = 2, 3, and 6, then the run sizes of SLHDs are 32, 48, and 96. The experiment is also
conducted via SLHD 1000 times. The values of η̂ (here, we use l = 1 and λ1 = λ2 = 1/2 without loss of generality) and µ̂1c
can be obtained based on experiments.

Table 2 compares the variances of η̂, µ̂11, µ̂12,Dvalue for MCD(D1, D2) and SLHD. Note that Dvalue is the standard variance
defined in (4.1) for a design with n runs. We can draw the following conclusions: (i) For the same run size, as shown in
columns 2 and 3, MCD(D1, D2) performs better than SLHD under var (η̂), var (µ̂11), var (µ̂12) and Dvalue. (ii) When the run size
of SLHD increases to 48, which corresponds to column 4, the design can achieve the same variance reduction as a 32-run
MCD(D1, D2) for η̂, but MCD(D1, D2) still performs better under var (µ̂1i) and Dvalue. (iii) Furthermore, when the run size of
SLHD increases to 96, as shown in column 5, even though it has the same or slightly smaller var (η̂), var (µ̂11), and var (µ̂12),
the run size is 3 times as large as that of a 32-run MCD(D1, D2). As a result, it can be concluded that MCD(D1, D2) performs
better than SLHD for the same run size and is a good substitute with an economical run size for SLHD.

For MCD(D1, D2), based on the results of the experiment in Example 2, the density plot and asymptotic theoretical
distribution of

√
m(η̂ −

∑s
c=1 λcµlc) are given in Fig. 2. It is clear that the density plot (dotted curve) is close to the

corresponding asymptotic theoretical distribution (solid curve). This figure corroborates the theoretical result of Theorem 3.

Example 3. Consider a computer experiment with three 3-level qualitative factors and four quantitative factors, which is
simulated as follows:

g(w) = 10 + τ1(γ1) + τ2(γ2) + τ3(γ3) + g(x),

where γi ∈ {1, 2, 3}, i = 1, 2, 3, τ1 = (0, −2/3, 2/3)′, τ2 = (0, −1, 1)′, τ3 = (8, −4, −4)′, and
g(x) = x1(

√
1 + (x2 + x23)x4/x1 − 1)/2 + x1 + 3x4 − 2.16. The distribution of x is the uniform measure on [0, 1]4. g(x)

is also used as a simulation function in Cox et al. (2001) for computer experiments that contain only quantitative factors.

For this experiment, we use MCD(D1, D2) and three SLHDs to estimate η, µ11, µ12, µ13 over 1000 replicates for each
design. MCD(D1, D2) has 27 runs and is constructed via Algorithm 1 based on an OA(27, 3391, 2) and an OA(9, 34, 2). The
three SLHDs contain 27 slices, which have 27, 54, and 108 runs with 1, 2, and 4 runs in each slice. Table 3 compares the
variances of η̂, µ̂11, µ̂12, µ̂13 for MCD(D1, D2) and the three SLHDs, with l = 1 and λ1 = λ2 = λ3 = 1/3. Again, MCD(D1, D2)
with an economical run size achieves the best performance, and conclusions similar to those based on Table 2 are obtained.
Fig. 3 presents the density plot and asymptotic theoretical distribution of

√
m(η̂ −

∑s
c=1 λcµlc) for MCD(D1, D2). This figure

corroborates the theoretical result of Theorem 3.



S. Wang, D. Wang and F. Sun / Statistics and Probability Letters 146 (2019) 168–174 173

Fig. 2. Density plot (dotted curve) of
√
m(η̂ −

∑s
c=1 λcµ1c ) in Example 2 based on MCD and the corresponding asymptotic theoretical distribution (solid

curve).

Fig. 3. Density plot (dotted curve) of
√
m(η̂ −

∑s
c=1 λcµ1c ) in Example 3 based on MCD and the corresponding asymptotic theoretical distribution (solid

curve).

5. Concluding remarks

We provided a theoretical foundation for the use of MCDs to conduct computer experiments with both qualitative
and quantitative factors under model (1.1). Two examples comparing SLHDs and MCDs are presented. According to the
comparisons, MCDs are a good substitute for SLHDs when the cost of experimentation is too expensive. Model (1.1) does
not consider the interactions among qualitative factors or interactions among quantitative and qualitative factors, and the
results obtained under a general model will be studied in the future.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2018.11.018.
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